A colony of rainbow trout (*Oncorhynchus mykiss*) in a decentralized aquatic animal facility was noted to have an increase in morbidity and mortality (from 4 or 5 fish each month to 3 or 4 fish daily) approximately 2 wk after experimental procedures began. The primary clinical signs were erratic swimming behavior and ‘flashing’ of fish against surfaces within housing enclosures. Moribund and normal rainbow trout were presented alive for diagnostic evaluation; samples of water from housing enclosures were provided for water quality assessment. The trout were determined to be infected with gyrodactylids, a common monogenean ectoparasite of the skin and gills in both marine and freshwater fish. This case report describes the diagnosis, pathology, and treatment of gyrodactylids and husbandry modifications associated with the resolution of this clinical aquatic-animal case.

Abbreviation: BBC, Big Beef Creek.

Here we describe a clinical case in which a population of hatchery-raised juvenile rainbow trout became infected with gyrodactylid ectoparasites after periodic exposure to wild-caught adult cutthroat trout, the most likely source of this foreign pathogen in the research facility. This parasitic infection ultimately caused a rapid and marked increase in morbidity and mortality above baseline levels. We discuss the acclimation and experimental procedures unique to the study design that led to the infection, its diagnosis, and its remediation in a research facility in which wastewater effluent could not be completely contained and neutralized. This report offers a unique example of pathogen transmission between groups of experimental animals and provides useful information for other clinical cases in which direct exposure of wild-caught and hatchery-raised fish is necessary for achieving research objectives or commercial endeavors.

**Case Report**

**Animals and husbandry.** Experiments were conducted at Big Beef Creek Field Station (BBC; Seabeck, WA), a remote decentralized facility of the University of Washington’s School of Aquatic and Fishery Sciences. The facility consists of approximately 10 acres of natural and artificial rearing facilities, freshwater and dry labs, and indoor and outdoor rearing spaces. High-quality well water is the primary water source. Well depth is 300 ft, with the pump set at 220 ft below the surface. The only treatment the well water received before entering tanks containing fish involved in this case report was passage through packed column aerators for degassing and oxygenation. Historically, effluent from indoor rearing facilities passed through a preliminary catch basin, followed by UV disinfection, before entering a series of 3 larger settling ponds that ultimately emptied into the main stem of Big Beef Creek. However due to several issues, including the structural damage resulting from a 2007 flooding event, the UV disinfection system is nonfunctional, and wastewater entered the larger settling ponds directly during the study period.

Predatory-sized, wild cutthroat trout (*Oncorhynchus clarkii*; *n* = 28; fork length, 225 to 409 mm; Figure 1 A) captured from Big Beef Creek during August 2009 through January 2010 were held in 1 of 3 outdoor circular tanks (diameter, 4.1 m) supplied with 9.5 to 11.5 °C well water in a flow-through configuration at a rate of 10 to 12 gallons per minute (Figure 2 A). The fish were fed frozen krill (Hikari Bio-Pure , Hayward, CA) every other day. Newly captured cutthroat trout were visually inspected for external injuries, and only apparently healthy fish were retained (those that appeared unhealthy were returned to the creek immediately after capture). New cutthroat trout were not quarantined before introducing them into the existing population of cutthroat trout. Tanks used to house cutthroat trout were disinfected with a povidone–iodine solution (20 ppm; Argent Chemical Laboratories, Redmond, WA) prior to use.

Predatory-sized coho salmon (*Oncorhynchus kisutch*; fork length, 330 to 389 mm) had already been raised at and were available from BBC and were presumed to be SPF for external parasites. Coho salmon were held in the same type of tanks as the cutthroat trout but never at the same time. Tanks used to house coho salmon were disinfected with a povidone–iodine solution (20 ppm; Argent Chemical Laboratories) prior to use. The coho salmon were fed ad libitum rations of pelleted feed (Silver Cup Fish Feed, Salt Lake City, UT) while awaiting use in experimental trials.

Rainbow trout prey (*O. mykiss*; *n* = 1520; fork length, 50 to 72 mm; Figure 1 B) were obtained in September 2009 from a certified disease-free hatchery (Eels Springs Hatchery, Washington Department of Fish and Wildlife, Shelton, WA). They were held indoors in 1 of 2 circular tanks (diameter, 1.5 m) receiving 9.5 to 11.5 °C well water in a flow-through configuration (Figure 2 B). Incandescent lights on a timer mimicked the natural photoperiod. Rainbow trout were fed various rations of pelleted feed (0.5% to 1.5% body weight every other day) to maintain required body sizes for experimentation. A holding tank designated as ‘unused’ contained rainbow trout that were naïve to predators (that is, had never encountered a predator) and awaiting use in a predation trial. A holding tank designated as ‘used’ held rainbow trout that...
Gyrodactylids in Oncorhynchus mykiss
Case history, diagnostics, and treatment. The first signs of disease in both groups of rainbow trout were noted in mid- to late April 2010, 2 wk after experiments with cutthroat trout were initiated. During routine observations of the rainbow trout, the average mortality rate had increased to 3 or 4 fish daily from a previous average mortality rate of 4 or 5 fish per month (September 2009 through March 2010), for a cumulative mortality of 167 fish prior to treatment (80% of this mortality occurred in April 2010). In addition, researchers noticed several fish in both the unused and used holding tanks that were ‘flashing’ or rubbing against available interior tank surfaces. Given the rapid increase in morbidity and mortality, moribund and normal fish (n = 5 to 8 each) were recommended for evaluation via standard necropsy procedures. On the day of diagnostic evaluations, mortality had increased to 15 fish daily.

Moribund and normal rainbow trout (n = 10 each; fork length, 60 to 80 mm; weight, 3 to 6 g) were submitted live for necropsy. Fish were euthanized by using an overdose (250 mg/L) of tricaine methanesulfonate (MS222, Sigma–Aldrich, St Louis, MO) buffered to pH 7.5 with sodium bicarbonate (Church and Dwight, Princeton, NJ). Prior to euthanasia, several fish were swimming normally, but many were floating upside-down or sideways at the surface and were respiring slowly. The less-active fish had truncated pectoral, pelvic, and caudal fins. No other abnormalities were noted on gross examination of fish carcasses. Skin-scrape and gill biopsy samples were taken from 4 fish and examined microscopically via wet mount. Multiple

Figure 1. Typical (A) adult cutthroat trout and (B) juvenile rainbow trout used as predators and prey, respectively.

Figure 2. Fish-holding tanks for (A) predatory cutthroat trout and coho salmon (outdoors) and (B) rainbow trout prey (indoors).
with previous obtained values revealed that all tested water-quality parameters of the well-water source at BBC were within normal limits.

From these findings, we diagnosed ectoparasitism by monogenean flatworms as the primary cause of mortality. Several chemical therapies have been used to treat gyrodactylids, but in this situation, treatment options were limited because effluents from holding tanks drained directly into Big Beef Creek watershed through 3 ponds (Figure 5). This situation precluded any possibility of effective containment of the effluent for chemical removal, leaving saltwater baths of affected fish as the only effective and environmentally acceptable therapy. Initial treatment plans specified that fish less than 5 g in weight were to be treated at 10 g/L for 10 to 15 min daily for at least 2 consecutive days; larger fish were to be treated at 15 g/L. To rule out potential adverse reactions to this treatment, sample groups of fish in both size classes (test populations of 8 to 12 fish) were tested to see how they would respond. After experimentation with different salt concentrations, all size classes were found to respond well to 20 g/L of table salt (Morton Salt, Chicago, IL) for a 20-min contact time. Consequently, this modified treatment was applied once daily at the same time on 3 consecutive days to the remaining population of approximately 1300 rainbow trout. The water was aerated during treatment, and fish were monitored during and after treatment. After treatment, overtly sick fish were removed and euthanized. The greatest mortality occurred after the first bath, when a total of 44 fish representing both tanks died (or were euthanized). Only 23 fish in total died or were euthanized after the subsequent 2 bath treatments.

Husbandry changes recommended and implemented included cleaning of the challenge tank and all equipment and subsequent disinfection with povidone–iodine before and after each use. Because the coho salmon were destined for use as predators in the predation experiments and because they were of hatchery origin, they too would be susceptible to monogenean infection and would benefit from the added disinfection step between trials. Furthermore, an additional, dedicated ‘return’ tank was established for the rainbow trout that had been ex-
proliferation of epithelial cells, therefore producing less organic matter for the parasites to subsist on and allowing time for the fish’s immune system to attack the organisms before they propagate.\(^5\)

Domesticated \textit{O. mykiss} is a species that appears to be particularly susceptible to some gyrodactylids. In fact, infections by various species, including \textit{Gyrodactylus derjavini}, \textit{G. salaris}, \textit{G. colemansenisi}, \textit{G. salmonis}, \textit{G. arcuatus}, \textit{G. nerkae}, and \textit{G. masu},\(^1\,6\,8\,16\,19\,23\) have been documented in both captive and wild populations of rainbow trout, whereas other host fish seldom exhibit epidemic infections.\(^5\)

Monogenean infections with low numbers of organisms may be subclinical, but in overcrowded, unsanitary, or suboptimal water quality conditions, viviparous monogeneans like gyrodactylids can reproduce rapidly and reach large numbers due to their direct life cycle. Transmission may occur by direct contact between fishes, contact between fish and detached worms on tank surfaces or equipment, and via worms floating in the water column.\(^5\,13\,21\,22\) Diagnosis is typically by microscopic examination of gill-clip or skin-scape wet mounts, which often reveal parasites moving in a characteristic stretch-and-recoil motion while anchored in tissue. Identifying the species or even genus is not necessarily required for successful treatment, but when desired, live or preserved samples can be sent to a reference laboratory for specific taxonomic identification.\(^18\)

The success of treatment can vary depending on the therapy chosen and the species or population of monogenean parasite. For captive fish, common treatment options include freshwater or saltwater baths (for marine or freshwater monogeneans, respectively) and prolonged immersion in formalin, organophosphates, mebendazole, or praziquantel (which may also be administered orally).\(^2\,9\,18\,22\,25\,27\,28\) Aluminum sulfate, hydrogen peroxide, and benzocaine have also been documented as methods of treatment or control of some monogenean infections.\(^18\)

Roterone has been used to completely eliminate infections among affected fish populations in the wild, including in 28 Norwegian rivers, which then were restocked with disease-free hatchery fish.\(^5\) However, this option is obviously an extreme measure for captive fish and has not been proven to permanently eradicate the parasites in every case.\(^5\)

Formalin has long been used for the treatment of gyrodactylid infections but is currently a less desirable treatment due to its carcinogenic and mutagenic effects; formalin also can cause changes in gill structure and the epidermis. Organophosphates are often effective, but the parasites can develop resistance to these products, particularly with regular use.\(^18\) For our facility, the choice of treatment was influenced heavily by the fact that no mechanism existed for containing effluent water and removing chemicals or medications prior to entering the watershed. Therefore, saltwater baths were deemed the best treatment option in this situation, providing good efficacy without adverse environmental consequences.

One limitation of saltwater baths as treatment for monogenean parasites is that the concentration required to effectively kill the parasites may not be tolerated by the fish, depending on the parasite and fish species involved. Freshwater monogeneans can rapidly become salt tolerant.\(^4\,24\) As a result, caution must be taken to ensure that the salinity change is great enough to kill the gyrodactylids but not the fish. Because gyrodactylids are viviparous, neutralization or elimination of eggs is not a concern, and treatment for the adult parasites is all that is required.\(^7\,18\)

Rainbow trout can be anadromous (typically referred to as steelhead or steelhead trout) and therefore have a relatively high tolerance for saltwater compared with many other freshwater species.\(^20\) They have been shown to have no change in blood

**Discussion**

Monogeneans (parasitic flatworms) frequently infect the skin and gills of a wide range of marine and freshwater fish. These worms are classified into 2 groups based on the morphology of the opisthohaptor, the caudal organ used for attaching to the host. With dactylogyrids, gyrodactylids fall into the common Monopisthocotylea type of monogeneans, which have a single large attachment organ with multiple large anchors or hooks (Figure 4). Together these 2 super families constitute the most economically important monogenean parasites of cultured fish and have been responsible for several rather notorious and costly declines in wild fish populations when inadvertently introduced into native stocks in Europe and the United States.\(^18\) In Europe, the introduction was likely through transport of fish from one river to another for restocking; however, anglers moving between fishing sites without disinfecting their fishing gear may also be responsible for some of the geographic spread of gyrodactylids in the wild.\(^5\)

Gyrodactylids and other monopisthocotyleans subsist on the superficial skin and gill layers of the host, causing irritation that can be inapparent or can manifest as clouding of the skin, focal reddening, epithelial hyperplasia, mucus overproduction, hemorrhage, and pruritus (indicated by flashing by affected fish). Ragged or damaged tails or fins may also be seen.\(^11\,20\,28\) Deep skin wounds, secondary bacterial, fungal, or viral infections leading to mortality and energetic compromise due to increased flashing behavior are possible complications of gyrodactylid infection.\(^5\,13\,21\) Even fish with low external parasite burdens can have elevated cortisol levels, causing immunosuppression that can render the host further susceptible to secondary infections.\(^5\)

In addition, severe emaciation of the damaged skin with heavy worm burdens likely disrupts the osmoregulatory capacity of the fish, adding another stressor.\(^5\) Depending on the host species, there is considerable variation in the host response to the parasites, which is thought to dictate the severity of the infection to some degree; resistant salmon species exhibit limited

---

**Figure 5.** The last of the 3 settling ponds used to remove suspended solids in effluent from the Big Beef Creek hatchery facility before the water returns to Big Beef Creek.
pH or bicarbonate concentration after an abrupt change from freshwater to seawater.3,7

Treatment of small salmonids, as with most fish, requires caution when increasing salinity exposure. Fish that are less than 5 g in body weight generally should not be exposed to salt concentrations greater than 10 g/L, whereas those less than 10 g generally should not be exposed to greater than 20 g/L.18 In contrast, some species of gyrodactylids can survive from 1 to 10 d at 10 g/L salinity and for nearly 2 d at 20 g/L.5,24 Therefore, prior to instituting treatment in these rainbow trout, we performed a trial treatment of fish of different sizes to establish a relatively high but well-tolerated salt bath dose and duration; 20 g/L for 20 min was found to be acceptable for fish of all sizes in this population. Total cumulative mortality before treatment was 167%; during treatment, cumulative mortality was reduced to 67, and after treatment, cumulative mortality was near 0.

Laboratory-based predator–prey interaction studies involving fish, like the one we describe here, often rely on fish hatcheries operated by either state or federal wildlife management agencies as sources for experimental animals. Such facilities are particularly useful for obtaining adequate numbers of smaller, prey-sized fish, given that these can be difficult to collect and transport effectively from the natural environment. Much effort is devoted to maintaining the health of fish produced in these facilities. Hatchery managers work directly with agency fish health professionals, pathologists, and veterinarians to ensure that fish raised and ultimately released into the environment are healthy. Consequently, hatchery-raised fish are typically naïve to some naturally occurring pathogens. Under laboratory conditions, if a population of animals is exposed to a new pathogen while subject to other sources of stress associated with experimental procedures, infection levels can quickly reach epizootic levels.

In the case we present, the most likely source of the parasitic organisms introduced into the population of hatchery-reared rainbow trout was the wild-captured cutthroat trout, which were transiently cohoused with the rainbow trout during acclimation in the unused holding tank and during pilot and experimental trials in the arena. Cutthroat trout were not physically evaluated for the presence of gyrodactylids by skin scrapes or gill biopsies, because this population was not exhibiting any morbidity or mortality. In addition, only a few cutthroat trout were available at the time of this event, and we opted to avoid handling these fish unnecessarily, to prevent their acclimation to humans and their exposure to additional stressful interactions that might have affected their use for this experimental study. Cutthroat trout are susceptible to infection by gyrodactylids and have found to be infected with gyrodactylids in the Pacific Northwest.10,16 Several factors changed just before and during the experimental period that are important to note: 1) to reduce stress on the predators, researchers stopped placing cutthroat trout directly into the unused rainbow trout holding tank at 1 mo prior to running experiments; 2) this change coincided with a reduction in feeding frequency of the rainbow trout (from every other day to every 3 d) to help to maintain them at the desired body size and to achieve a specific behavior in the experimental arena; and 3) overall handling of predators and prey increased greatly during the experimental period.

The reduction in feeding, their increased handling, and pursuit by predators during the experimental period likely augmented stress levels in the rainbow trout, ultimately leading to the rapid increases in gyrodactylid infection levels and fish morbidity and mortality. The 2 most likely pathways of gyrodactylid exposure in this situation were direct exposure to cutthroat trout and fo-
Acknowledgments

Portions of this case report were presented at the 62nd National AALAS Meeting in San Diego, CA. We thank the University of Washington’s Veterinary Services for their diagnostic work-ups and for facilitation of the investigation and resolution of this outbreak and Dave Rose and Megan Gima, hatchery managers at BBC, for their onsite assistance with this case. We also thank the investigative groups whose fish were involved. All authors have no competing financial interests associated with the mention of specific products and vendors.

References